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Abstract
Understanding the role of the inter-atomic force constants in lattice dynamics of random binary
alloys is a challenging problem. Addressing these inter-atomic interactions accurately is a
necessity to obtain an accurate phonon spectrum and to calculate properties from them. Using a
combination of ab initio density functional perturbation theory (DFPT) and the itinerant
coherent potential approximation (ICPA), an analytic, self-consistent method for performing
configuration averaging in random alloys, we model the inter-atomic force constants for
Pd0.96Fe0.04 and Pd0.9Fe0.1 alloys based upon the ab initio results and intuitive arguments. The
calculated phonon dispersion curves and elastic constants agree very well with the experimental
results. Comparison of our results with those obtained in a model potential scheme is also done.
The modeling of inter-atomic interactions in random alloys and their roles regarding the
phonon-related properties are also discussed in light of these results.

1. Introduction

The calculation and analysis of phonon excitations in ordered
intermetallics and disordered alloys is one of the fundamental
areas in materials science research. The energy dispersion
of phonons provides rich information about the dynamical
properties of the material [1]. In particular, it is an
essential input in the calculation of thermodynamic properties
like the heat capacities, thermal expansion coefficients,
transport properties like diffusivity and quantities like the
electron–phonon interactions, to name just a few. More
recently, the analysis of phonon spectra of materials has been
extremely useful in studying the contribution of vibrational
entropy towards phase stability and phase transition at
finite temperature. A wealth of experimental data on a
variety of intermetallics and substitutionally disordered alloys
is now available [2–5]. The experimental data include
disordered alloys at both stoichiometric and off-stoichiometric
compositions. The experimental analysis mostly dealt with
the calculation of vibrational entropy in a given phase or the
calculation of the difference in vibrational entropy between
phases, calculation of migration enthalpy or vacancy formation
enthalpy due to diffusion because of technological relevance.

For these analyses, the average vibrational density of states
is the only quantity required. However, to understand the
underlying microscopic nature of the complex interplay of
forces between various pairs of species in an alloy, detailed
information on the phonon dispersion and the force constant
data is necessary. The dispersion curves though can be
obtained from experiments but the force constants are obtained
simply by fitting experimental frequencies to simple Born–
Von Karman models. This approach works for ordered alloys
but fails to exhibit the variation of force constants between
various species in a completely random environment. On the
theoretical side, the calculation of the full phonon dispersion,
the force constants and the densities of states have been made
possible due to the advent of first-principles calculations. As
a result, the experimental data can be successfully interpreted
for ordered alloys. Compared to this, a suitable theoretical
approach to study the disordered phases, in particular, for off-
stoichiometric compositions is yet lacking. The additional
complexities in substitutionally disordered systems are the
finite phonon lifetimes, a quantity which is far more sensitive
than the dispersion curves or the densities of states. There
have been numerous investigations on the phonon excitations
in substitutionally disordered alloys at various concentrations
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since the early 1960s to the late 1980s [6–10] but a complete
understanding of the lattice dynamics has not been possible
due to the lack of a suitable theory which can address all
three important disorder effects: the mass disorder, the force
constant disorder and the environmental disorder. The coherent
potential approximation (CPA) [11] was the most successful
theoretical tool to study disordered alloys and enforce the all
important configuration averaging, but it had limited success
for phonon excitations due to its single-site nature. Unlike
the electronic excitations, the phonons have the off-diagonal
disorder embedded in them because of the acoustic sum
rule. A single-site theory cannot therefore address any kind
of off-diagonal disorder. Successive cluster generalizations
of the CPA [12–18] were either restrictive or non-analytic,
and therefore unable to provide the solution. Recently, one
of us successfully formulated a cluster generalization of the
CPA which has the necessary analytic properties and is self-
consistent [19]. This method, known as the ‘itinerant coherent
potential approximation’ (ICPA), was able to calculate the
phonon spectra and disorder-induced widths in different alloys
[19–21]. However, the key input that needs to be fed into this
Green’s function-based method for performing configuration
averaging of physical quantities is the inter-atomic force
constant between various pairs of species. In [19–21],
these force constants were either chosen empirically or were
taken from the experiments, depending upon the physical
reality in which comparisons between theory and experiments
were being attempted. One, therefore, needs to look for
better alternatives regarding the inter-atomic force constants in
random alloys.

An understanding of the behavior of various inter-atomic
force constants in a random environment is a necessity to
analyze the phonon spectra and related properties, as has
been demonstrated earlier [19]. This necessity is probably
more in the case of the so-called type-II alloys where the
constituents making up the alloy themselves crystallize in
different structures in their elemental phases while a single
unique lattice is formed upon alloying. Examples of such
systems are iron–nickel, iron–platinum and iron–palladium. In
disordered phases of these alloys, a unique fcc solid solution
is formed whereas iron stabilizes in the bcc phase at room
temperature. It is a well-known fact that FCC iron is unstable
until one attains very high temperature [22]; the force constants
in FCC iron at low temperatures are, therefore, expected to
be soft. It would, therefore, be interesting to investigate
the changes in the inter-atomic force constants associated
with iron atoms, if any, and their impact on the phonon
spectra in the disordered phases of a type-II alloy. We have
chosen the Pdx Fe1−x alloy for such an investigation. To our
knowledge, such a systematic study on the behavior of the
inter-atomic force constants and their role on the features of
the phonon dispersion relations has not been done for this
alloy. Neutron scattering experimental results on phonon
frequencies and elastic constants are available for x = 0.96
and 0.9 [23] in this alloy. The only theoretical results available
on these systems are based on a pair-potential method [24],
later modified to include three-body interactions [25, 26].
In this approach, the model potential is generated from the

dissociation energy of a pair of atoms, the distance between
them and by fitting to the elastic constants. The three-body
term is later evaluated by fitting the total interaction energy of
an atom in a particular crystal structure to the total cohesive
energy of the element. The inter-atomic force constants are
then obtained from the spatial derivatives of these potentials.
In the case of Pd0.96Fe0.04 and Pd0.9Fe0.1 the phonon spectrum
obtained from the pair-potential-only model showed significant
deviation from experiments and the elastic constants were off
by about 25% on average. Although inclusion of the three-
body term in the potential improved the phonon frequencies
for these alloys, one serious drawback of the model potential
approach is that the role of the electronic structure of the
elements forming the alloy was altogether neglected. Since the
inter-atomic interactions were dependent solely upon a given
crystal structure and not on the electronic structure, the nearest-
neighbor Fe–Fe and Pd–Pd inter-atomic force constants came
out to be of the same order of magnitude (since the nearest-
neighbor force constants in a FCC structure are an order of
magnitude higher than the distant neighbors, we focus on these
only). This result is completely counterintuitive because Fe–
Fe force constants are expected to be softer than those for
Pd–Pd for the reason mentioned above. The inter-atomic
force constants as obtained by the model potential approach,
therefore, seem not to represent the actual microscopic picture.

In this paper, we investigate the interrelations between
the inter-atomic force constants and the lattice dynamics
of Pd0.96Fe0.04 and Pd0.9Fe0.1. In this context, we present
an alternative approach to calculate the inter-atomic force
constants in these two alloys. This approach is a combination
of an ab initio method which computes inter-atomic
interactions based upon the detailed electronic structures and
the itinerant coherent potential approximation which does the
desired averaging over various configurations in the disordered
alloy, addressing both mass as well as force constant disorder.
We present results on phonon frequencies and elastic constants
for these two alloys. Significant insight about the inter-
atomic interactions between various pairs of chemical species
is obtained in the course of our investigations. The role of
the inter-atomic interactions in influencing the phonon spectra
and the limitations of the model potential approach are also
discussed in detail.

This paper is organized as follows. In section 2 we
describe in some detail the various components of our
methodology. Calculation details are presented in section 3.
The results and discussions are presented in section 4.
Concluding remarks and future directions are presented in
section 5.

2. Methodology

2.1. Modeling the inter-atomic force constants

As has been discussed in section 1, the most crucial
component in obtaining an accurate phonon spectrum and
related properties in random alloys is the accurate modeling
of the force constants. The best source for obtaining the
inter-atomic force constants between a given pair of species
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constituting the alloy is ab initio calculations which are
parameter-free. However, no ab initio method for computing
the inter-atomic force constants in a random alloy environment
is yet available. Previously, a few attempts were made to obtain
force constants for random alloys from ab initio calculations
on a single ordered structure having the same symmetry as
that of the alloy [20, 21]. Although the calculations are
less expensive computationally, the results obtained were
far from reality. An alternative approach was provided by
Cedar and co-workers [27, 28]. In this approach, they found
that the relevant force constants are strongly correlated with
the bond lengths between a given pair of atoms and, as a
result, the force constant versus bond length relationship is
transferable across the compositions for a given alloy. The
advantage of this approach is that the force constant versus
bond length relationship can be obtained from a few first-
principles calculations on select configurations and then can
be transferred to determine force constants for other atomic
configurations, once the relevant bond lengths are known.
Although this approach is based upon a relatively simple
idea, its implementation can be quite cumbersome when the
alloy compositions deviate significantly from stoichiometric
ones. The selected configurations for obtaining the force
constant versus bond length relationships can themselves
be quite complicated and therefore the calculations can be
computationally expensive [29]. However, taking a cue from
their observation that the force constants are dependent upon
the bond distances, we here model the inter-atomic force
constants for Pdx Fe1−x alloys for x = 0.96 and 0.9 the
following way: the Pd–Pd and Fe–Fe force constants are
computed from ab initio calculations on pure FCC Fe and
pure FCC Pd at the lattice constants of the random alloy. The
reason behind this is twofold; first, the size difference between
Fe and Pd atoms is not appreciable. Therefore, there would
not be appreciable dispersion of bond distances for Fe–Fe
and Pd–Pd pairs. As a result, the FCC environment around
each Fe and Pd atom in the original random alloy and the
bond distances can be well represented by the calculations as
outlined above; second, our results would be compared to those
obtained from the model potential calculations to investigate
and understand the complex interplay of interactions between
various pairs of chemical species. Since the force constants
generated from the model potentials were obtained at the alloy
lattice constants, a direct comparison could be effected with
this choice.

Modeling the Fe–Pd interactions is, however, tricky. In
the model potential approach, the Fe–Pd force constants were
considered to be simple concentration averages of the Fe–Fe
and Pd–Pd force constants. We have tested the validity of this
approach and our observations and further developments have
been discussed in detail in section 4. We have used the density
functional perturbation theory (DFPT) [30] for performing
the ab initio calculations and the itinerant coherent potential
approximation (ICPA) [19] for performing the configuration
averaging. In the next two subsections, we briefly describe the
features of these methods.

2.2. Density functional perturbation theory

Density functional perturbation theory (DFPT) is a density
functional theory (DFT) [31, 32] based linear response method
to obtain the electronic and lattice dynamical properties in
condensed matter systems. The inter-atomic force constants
required to calculate the phonon frequencies are derived via
the linear response of the electronic subsystems [33]. The
Hellmann–Feynman theorem [34, 35] is used to calculate the
elements of the force constant matrices:

CRI RJ = −∂FI

∂RJ
=

∫
∂nR (r)
∂RJ

∂VR (r)
∂RI

dr

+
∫

nR (r)
∂2VR (r)
∂RI ∂RJ

+ ∂2 EN (R)

∂RI ∂RJ
(1)

RI , RJ are the ionic positions, FI is the Hellmann–Feynman
force on the I th nucleus, nR(r) is the ground state electronic
charge density corresponding to the nuclear configuration R,
VR(r) is the electron–nucleus interaction and EN is the ion–
ion interaction energy.

From equation (1) it is clear that the inter-atomic force
constants are determined from the ground state charge density
and from its linear response to a distortion in the ionic
configuration. In the DFPT, these quantities are calculated
within the DFT framework with a workload of the same
order as that required for a standard ground state total energy
calculation.

2.3. Itinerant coherent potential approximation

Based upon the augmented space formalism [36], a clever
bookkeeping technique to account for disorder fluctuations
in a random alloy environment, the itinerant coherent
potential approximation (ICPA) is a mean-field based
cluster generalization of the single-site coherent potential
approximation (CPA) [11]. It is an analytic, self-consistent
method of configuration averaging which preserves site-
translational invariance. In this formalism, the coherent
potential like the mean-field approximation begins with a
partition of the augmented space into a part which is spanned
by the reference or null cardinality state |{∅}〉, the average
configuration state and the remaining part Ψ − |{∅}〉〈{∅}|
spanned by the fluctuation states: {|{C}〉}. With this partition,
any operator can be written in a block representation:

A =
(

A1 A′
A′† A2

)
.

The partition or down-folding theorem then allows us to
invert this operator in the subspace spanned by the average
configurations alone. According to the augmented space
theorem this is the configuration average of the quantity
represented by A. Defining the operator K as (mω2–Φ),
m and Φ being the mass and the force constant operators,
respectively, and using the above partition: K1 = (〈〈m〉〉ω2 −
〈〈Φ〉〉). The down-folding theorem and augmented space
theorem together give us

〈〈G(ω2)〉〉 = (K1 − K′†FK′)−P1 ,

= (G−1
VCA(ω2) − Σ(ω2))−P1 ,
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F = K−P2
2 is the itinerator (2)

Σ = K′†FK′ is the self-energy. (3)

Here A−P1 and A−P2 refer to the inverses of the operator
A in the subspaces labeled by 1 and 2. Confining only to
the single fluctuation states of the type |{R}〉 the self-energy
is then computed self-consistently in this approximation.
Adopting the notation 〈{R}|A|{R′}〉 = A(R)(R′), and using the
translational invariance of the augmented space operators, the
self-energy and the itinerator F within the single fluctuation
states can be approximated as

Σ =
∑
R R′

K′†(R)
F(R)(R′)K′(R′), (4)

F(R)(R′) = G(R)

[
δR R′ +

∑
R′′

V(R)(R′′) F (R′′)(R′)

]
. (5)

In going from equation (2) to (4) all contributions to the self-
energy of configuration states with more than one fluctuation
in more than one site have been neglected. Similarly, in going
from equation (3) to (5), matrix elements of the itinerator F
between configuration states with more than one fluctuation
present at a time, which corresponds to coherent scattering
from more than one site, have been neglected and such states
do not contribute to F and hence to the self-energy Σ within
this approximation. The second equation is a Dyson equation
within the subspace spanned by only single fluctuation states.
Self-consistency is achieved through

G(R) = (
G−1

VCA − Σ(R)
)−1

,

Σ(R) =
∑

R′ R′′ �=R

K′(R′)F(R′)(R′′)K′(R′′).

The above argument shows that, unlike the usual CPA
where only a single fluctuation at a site is considered, multiple
fluctuations coming from multiple scattering is present in the
itinerator F and therefore contribute to the self-energy Σ. In
the context of phonon excitations, this enables one to use this
formalism to accommodate the force constant disorder along
with mass disorder.

3. Computational details

First-principles Quantum-Espresso code1, based upon a plane
wave-pseudopotential implementation of the DFPT, has been
used to compute the Fe–Fe and Pd–Pd force constants at the
alloy lattice parameters, 7.31 au for Pd90Fe10 and 7.339 au for
Pd96Fe4. Ultrasoft pseudopotentials [37] with nonlinear core
corrections [38] were used. Perdew–Zunger parameterization
of the local density approximation [39] was used for the
exchange–correlation part of the potential. Computation of
the Fe–Fe force constants was also done with the PBE-96
GGA [40] exchange–correlation functional for the sake of

1 Quantum-Espresso is a community project for high-quality quantum-
simulation software, based on density functional theory, and coordinated
by Paolo Gianozzi. See http://www.Quantum-Espresso.org/ and http://www.
pwscf.org.

comparison as there are serious doubts regarding the reliability
of LDA results for iron. Plane waves with energies up to
55 Ryd are used in order to describe electron wavefunctions
and Fourier components of the augmented charge density with
cutoff energy up to 650 Ryd are taken into account. The
Brillouin zone integrations are carried out with Methfessel–
Paxton smearing [41] using a 12 × 12 × 12 k-point mesh. The
value of the smearing parameter is 0.02 Ryd. These parameters
are found to yield phonon frequencies converged to within 5%.

After achieving the desired level of convergence for
the electronic structure, the force constants are conveniently
computed in reciprocal space on a finite q-point grid and
Fourier transformation is employed to obtain the real-space
force constants. The number of unique real-spaced force
constants and their accuracy depend upon the density of the
q-point grids: the closer the q-points are spaced, the more
accurate the force constants are. In this work, we have used
a 4 × 4 × 4 q-point mesh.

The ICPA calculations were done on 400 energy points.
The disorder in the force constants was considered for the
nearest-neighboring shell only. A small imaginary frequency
part of −0.05 was used in the Green’s functions. The Brillouin-
zone integration was done over 356 q-points in the irreducible
Brillouin zone. The simplest linear-mixing scheme was used
to accelerate the convergence. The number of iterations ranged
from 5 to 15 for all the calculations.

4. Results

In the calculations of the phonon spectrum using the model pair
potentials, the system was considered to be mean crystal-like
where the mass was considered to be a concentration average
of Fe and Pd masses and the force constant disorder was
substantially weak. The weak force constant disorder resulted
from the fact that the Fe–Fe and Pd–Pd force constants were
of nearly the same magnitude and the Fe–Pd force constants
were concentration averages of the above two. The Fe and
Pd masses have a ratio ∼1:2; therefore the mass disorder in
the alloy should be significant, apart from the force constant
disorder. Clearly, a mean crystal model like the one followed
in [24] and [25] would not work properly. To demonstrate
this, we have done ICPA calculations with this set of force
constants [24, 25] and with the masses of the constituents
being kept equal to the concentration averaged mass. The
results for Pd0.9Fe0.1 are presented in figure 1. The dispersion
curves deviate substantially from the experimental results. The
disagreement is greater as one goes towards the zone boundary.
The agreement is near perfect for the longer wavelengths.
The reason behind such discrepancies can be understood as
follows: in the longer wavelength limit, self-averaging of both
mass and force constants over a single wavelength reduces the
ICPA to that of a mean crystal model like the virtual crystal
approximation (VCA), making near perfect agreement with
the experiments in our case; in the shorter wavelength regime
where frequencies are higher the mass and the force constant
disorders play a more significant role. In the mean crystal-like
model generated by the model potential, all three inter-atomic
force constants are pure Pd-like and the mass is an average

4

http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.Quantum-Espresso.org/
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org
http://www.pwscf.org


J. Phys.: Condens. Matter 21 (2009) 095411 B Dutta and S Ghosh

ζ

Figure 1. Dispersion curves (frequency ω versus reduced wavevector
ζ ); ζ = |�q|

|�qmax| , �q the phonon wavevector; for Pd0.9Fe0.1 calculated in
the ICPA (solid lines) with the force constants obtained from model
potential. The circles are the experimental data.

one which is lower than that of the Pd mass. The phonon
frequencies obtained, therefore, are overestimated as the mean
crystal is like that of pure Pd with a reduced mass due to neglect
of mass and force constant fluctuations.

In order to address the microscopic picture of inter-atomic
interactions more realistically, we first focus on the lattice
dynamics of FCC Fe at the lattice constants of the alloys
considered. The dispersion curves of pure Fe calculated by
the ab initio DFPT at the alloy lattice constant of Pd0.9Fe0.1

are presented in figure 2. The results with both the LDA
exchange–correlation and with the GGA exchange–correlation
are presented for the sake of comparison because the LDA
is known to fail in reproducing the correct magnetic ground
state of bcc iron [42]. The results show that the FCC Fe
is dynamically unstable at the given lattice constant. This
qualitative feature is identical for both exchange–correlation
functionals. Quantitatively, the GGA frequencies are larger
than those of the LDA. Since our only aim was to show that
the dynamical instability of the Fe at the FCC phase and at
the given lattice constant is independent of the exchange–
correlation functional, the quantitative values of the phonon
frequencies are irrelevant for the discussion. The results
clearly demonstrate that the use of the LDA exchange–
correlation functional is justified in the present case. The
reason LDA works in the present case, although it even
fails to produce the ferromagnetic ground state for the bcc
structure, is the following: here we have done computations
on the ferromagnetic-FCC phase of iron and at a lattice
constant of 7.31 au. Wang et al [43] had earlier demonstrated
that at the FCC phase the lowest energy state of the Fe is
a high-spin ferromagnetic state beyond the lattice constant
of 6.8 au and that the existence of this state is consistent
with the experimental observation that FCC Fe precipitates

-2

-1

0

1

2

3

4

5
[ζ00] [ζζ0] [ζζζ]

ζ

Figure 2. Calculated LDA (solid lines) and GGA (dotted lines)
phonon dispersion curves of Fe in the FCC phase, both computed at
the experimental lattice constant of Pd0.90Fe0.1.

Table 1. Computed force constants (in units of dyn cm−1) for
Pdx Fe1−x . Fe–Fe and Pd–Pd force constants are obtained from DFPT
calculations. Fe–Pd (averaged) force constants are the ones obtained
by performing concentration averages on Fe–Fe and Pd–Pd force
constants. Fe–Pd (reduced) force constants are the ones reduced by
20% from the Fe–Pd (averaged) values. L and T represent the
longitudinal and the transverse force constants, respectively.

Pair type Conc. (x) L T

Fe–Fe 0.96 13 366 −566
Pd–Pd 0.96 45 925 −2424
Fe–Pd (averaged) 0.96 44 623 −2349
Fe–Pd (reduced) 0.96 35 698 −1880
Fe–Fe 0.90 14 495 −609
Pd–Pd 0.90 48 768 −2699
Fe–Pd (averaged) 0.90 45 340 −2490
Fe–Pd (reduced) 0.90 36 272 −1992

in Cu–Au alloys (lattice constant = 7.11 au) [44]. Their
calculations were done with the LDA functional. Therefore,
for FCC Fe at the lattice constants considered for our study,
the LDA functional can be used safely. Similar to this case,
we see the identical qualitative features in LDA and GGA
phonon dispersion results for Fe at the lattice constant of
Pd0.96Fe0.04 as well, which demonstrates that the Fe is also
dynamically unstable at this lattice constant. Consequently, the
nearest-neighbor force constants (longitudinal and transverse)
as shown in table 1 are much softer than the corresponding ones
in the case of pure Pd calculated at the same lattice constants.
This is only to be expected as has been discussed before. This
softness of the Fe–Fe interactions are expected to remain in
the alloys studied as well because of the same lattice structure
of the element and the alloy and because of the dependence
of longitudinal (stretching) and transverse (bending) force
constants on bond distances alone [27]. Therefore, the Fe–Fe
interactions as portrayed in the model potential based method
are far from reality.

In what follows, we calculate the phonon dispersion
curves of these two alloys by the ICPA using the ab initio
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Fe–Fe and Pd–Pd force constants. As a first approximation,
the Fe–Pd force constants are taken to be simple concentration
averages of the Fe–Fe and Pd–Pd force constants, as was
done in the calculations with the model potentials [24, 25].
The results for Pd96Fe4, calculated with these sets of force
constants, are presented in figure 3. The phonon frequencies
are obtained from the peaks of the coherent scattering structure
factor defined as

〈〈Sλ(�q, w)〉〉coh =
∑

ss ′ ds ds′
1

π
Im〈〈Gss ′

λ (�q, w2)〉〉 (6)

where λ is the normal-mode branch index, ds is the coherent
scattering length for the species s and 〈〈Gss ′

λ (�q, w2)〉〉 is the
configuration-averaged spectral function associated with the
species pair s, s ′. The results show good agreement with
experimental results for the major part of the spectrum for the
alloy. However, near the zone boundary, spurious splittings
in the dispersion curves are observed. This feature of spurious
splitting for high values of ζ is observed for the Pd0.9Fe0.1 alloy
as well. This kind of splitting in dispersion curves is a typical
feature of a strong force constant disorder. In [19], the splitting
in the dispersion curve for the Ni50Pt50 alloy was found to
be due to the interplay of the Ni–Ni, Pt–Pt and Ni–Pt force
constants whereas in [21], a spurious splitting like the present
case was observed in the Fe50Pd50 alloy which was due to an
overestimation of the Pd–Pd force constants. To understand
the sources of the unphysical splittings in our cases, we take
recourse in the partial and the average structure factors. In
figure 4, we present results for the structure factors along the
[ζ00] direction and for the longitudinal branch at some selected
ζ values. For Pd0.96Fe0.04 (figure 4(a)), we observe that the
contributions of the Fe pairs to the total structure factors are
minuscule and the spectrum is dominated mainly by the Pd
pairs. However, the structure factor at the zone boundary has a
two-peak structure where the small hump-like peak at a higher
frequency is due to substantial contributions from the Fe–Pd
pairs. This is the reason behind the existence of the extra
longitudinal branches in the dispersion curves. For Pd0.9Fe0.1

(figure 4(b)), the peaks in the structure factors are mostly due
to the Pd pairs with some contribution from the Fe–Pd pairs
for smaller ζ values. However, as one moves towards the zone
boundary, a hump starts to show up at higher frequencies, as
is seen in the case of the [0.7, 0, 0] longitudinal branch. The
hump originates mainly from the Fe–Pd contributions. At the
zone boundary, the main peak in the structure factor shifts
substantially towards high frequency, producing a split in the
dispersion curve. The new peak is now dominated by the Fe–
Pd contributions along with contributions from the Pd pairs and
Fe pairs. It is interesting to note that, on the lower frequency
side where Pd–Pd had dominant contributions, no peak is
observed because of the fact that the Fe–Pd contributions
have neutralized the Pd–Pd contributions completely. The
observations in the structure factor results suggest that, for high
ζ values, the Fe–Pd interactions are competing with the Pd–
Pd interactions producing the anomalous new branch in the
phonon spectrum. That the Fe–Pd interactions are as strong
as the Pd–Pd interactions can be understood from the force
constants provided in table 1. We can therefore conclude that
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Figure 3. Dispersion curves for Pd0.96Fe0.04 calculated by the ICPA.
The Fe–Pd force constants are the concentration-averaged ones. The
circles are the experimental points.

the Fe–Pd interactions calculated from simple concentration
averages of the Fe–Fe and Pd–Pd interactions do not provide a
correct picture of the microscopic interactions.

In our endeavor to model the inter-atomic interactions
correctly with the help of the ab initio force constants, we
next try to model the Fe–Pd force constants making use of the
following intuitive argument: the basic assumption on which
we calculated the Fe–Fe and Pd–Pd force constants at the alloy
lattice constants was that the inter-atomic longitudinal and
transverse force constants are dependent upon bond distances
alone. In the same spirit, the Fe–Pd force constants can,
therefore, not be of nearly the same magnitude as the Pd–
Pd ones. This intuitive argument is based upon the fact
that, in both the alloys considered here, the Fe concentration
is very low; therefore in the sample the Pd atoms would
find themselves mostly surrounded by Pd atoms, making the
average bond distances of Fe–Pd larger than that of Pd–
Pd, resulting in the softening of the Fe–Pd interactions in
comparison to the Pd–Pd ones.

Based on this intuitive argument, we now reduce the Fe–
Pd force constants from the concentration-averaged values,
keeping the Fe–Fe and Pd–Pd ones intact. The anomalies in
the phonon spectrum completely disappear by a 20% reduction
of the Fe–Pd force constants from the concentration-averaged
values. In figures 5 and 6 we present the dispersion curves
calculated by the ICPA using these new sets of force constants
for Pd0.96Fe0.04 and Pd0.9Fe0.1, respectively. We observe
substantially good agreement between the ICPA results and the
experimental results for both cases. Corresponding structure
factors for [100] longitudinal branches are shown in figures 7
and 8, respectively. Unlike the previous structure factors
(figure 4), no dual peak structures appear in these cases. For
both alloys, the Fe–Pd contributions are significantly weaker
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Figure 5. Dispersion curves for Pd0.96Fe0.04 with 20% reduced
Fe–Pd force constants obtained from the ICPA calculations. The
circles are the experimental points.

than the Pd–Pd ones and, at the zone boundary, the Fe–
Pd contributions only add more weight to the single peak
dominated by the Pd–Pd contributions. The extra peaks which
were observed with the concentration-averaged Fe–Pd force
constants are now shifted to the lower frequencies and merge
with the main peak.
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Figure 6. Dispersion curves for Pd0.9Fe0.1 with 20% reduced Fe–Pd
force constants obtained from the ICPA calculations. The circles are
the experimental points.

Finally, we calculate the elastic constants in these alloys
from the slopes of the phonon dispersion curves in order to
check the accuracy and the quality of the phonon frequencies
obtained by the modeling strategy adopted here. The results
are given in table 2. Results obtained from the model potential
calculations [24] and the experiments [23] are also presented
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with 20% reduced Fe–Pd force constants for ζ = 1 in the [ζ , 0, 0]
direction in Pd0.96Fe0.04. The solid lines are the total contribution, the
dotted lines are the Fe–Fe contributions, the long-dashed lines are the
Pd–Pd contributions and the dotted–dashed lines are the Fe–Pd
contributions. All the curves are for longitudinal modes. The inset
shows the contributions from various pairs near the peak.
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Figure 8. Partial and total structure factors calculated in the ICPA
with 20% reduced Fe–Pd force constants for ζ = 1 in the [ζ ,0,0]
direction in Pd0.9Fe0.1. The solid lines are the total contribution, the
dotted lines are the Fe–Fe contributions, the long-dashed lines are the
Pd–Pd contributions and the dotted–dashed lines are the Fe–Pd
contributions. All the curves are for longitudinal modes. The inset
shows the contributions from various pairs near the peak.

for comparison. We observe an overall better agreement of
our results with the experimental values than those of the
model potential approach. The only significant discrepancy
is observed for C44 in the case of Pd0.96Fe0.04. The average
deviation between our results and the experimental ones is
about 16%, indicating reasonably good agreement.

5. Conclusions

This paper provides a novel approach to understand the
influence of inter-atomic interactions between various pairs of

Table 2. Computed elastic constants (in units of Mbar) for
Pdx Fe1−x .

Pd0.96Fe0.04 Pd0.9Fe0.1

Theo.
(our calc.)

Theo.
[24]

Expt.
[23]

Theo.
(our calc.)

Theo.
[24]

Expt.
[23]

C11 1.97 1.716 2.3 2.24 1.724 2.29
C12 1.25 1.273 1.53 1.41 1.292 1.65
C44 1.26 1.015 0.78 1.12 1.004 0.86

species in a random binary alloy on the lattice dynamics of such
systems both qualitatively and quantitatively using Pdx Fe1−x

alloys as an example case. The modeling of inter-atomic
interactions was based upon the results of ab initio calculations
and the intuitive argument about dependence of stretching
and bending force constants on bond lengths. This strategy
incorporated the important electronic structure effects which
influence the interplay of forces at the microscopic level and
thus provided a realistic and accurate picture which was absent
in the approach based upon construction of model potentials.
The ICPA, on the other hand, performed the configuration
averaging in a self-consistent way taking into account the
disorder fluctuations in both mass and force constants. These
issues were not addressed in the model potential approach and
hence modeling the random alloy by a mean crystal-like one
could not provide a realistic picture of disordered fluctuations
producing significant differences with the experimental results
which can only get exaggerated for a system with stronger
mass and force constant disorder like NiPt. Our methodology,
a combination of an accurate ab initio electronic structure
tool and an efficient self-consistent method for configuration
averaging, on the other hand, was able to systematically
investigate the influences of the force constant fluctuations on
the phonon spectrum and therefore understand the microscopic
origin of the lattice dynamics in PdxFe1−x alloys. The
calculated phonon frequencies and the elastic constants agreed
very well with the experiments, thus justifying the modeling
strategy adopted. This combination of ab initio methods, the
modeling strategy for force constants adopted here and the
ICPA method can, therefore, act as an accurate and efficient
tool to study the phonons and related properties for disordered
alloys.
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